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ABSTRACT
The United States Environmental Protection Agency (EPA) peri-
odically releases Integrated Science Assessments (ISAs) that syn-
thesize the latest research on each of six air pollutants to inform
environmental policymaking. To guarantee the best possible cover-
age of relevant literature, EPA scientists spend months manually
screening hundreds of thousands of references to identify a small
proportion to be cited in an ISA. The challenge of extreme scale
and the pursuit of maximum recall calls for effective machine-
assisted approaches to reducing the time and effort required by the
screening process. This work introduces the ISA literature screening
dataset and the associated research challenges to the information
and knowledge management community. Our pilot experiments
show that combining multiple approaches in tackling this challenge
is both promising and necessary. The dataset is available at https:
//catalog.data.gov/dataset/isa-literature-screening-dataset-v-1.1

CCS CONCEPTS
• Information systems→ Document filtering; • Computing
methodologies→ Supervised learning by classification.
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1 INTRODUCTION
Since 1977, the U.S. Clean Air Act (CAA) has directed the United
States Environmental Protection Agency (EPA) to synthesize the
most recent scientific research at regular intervals for each of six
criteria ambient air pollutants. These documents, called Integrated
Science Assessments (ISAs), aim to provide an updated, compre-
hensive review of the state of the science on the health and welfare
effects of these air pollutants, and lay the scientific foundation for
the policymakers setting the National Ambient Air Quality Stan-
dards (NAAQS) [2]. Because an ISA document has far-reaching
implications on environmental policies and subsequent impacts on
public health and welfare, the EPA invests substantial resources
to ensure that the document covers up-to-date policy-relevant lit-
erature as comprehensively as possible. As a result, ISAs can be
viewed as extremely large scale, periodically updated systematic lit-
erature reviews that present unique characteristics and challenges
as described below.

Large scale: To give a concrete sense of scale, the 2020 ISA for
Ozone and Related Photochemical Oxidants contains 12 chapters
spanning 1,468 pages, and 1,704 unique citations [1]. Initial high-
recall search queries returned a total of 171,376 potentially relevant
publications, which were reviewed by a team of 38 domain experts
for more than 6 months.

High-recall requirement: Missing any relevant reference may
have substantial consequences for public health and ecosystem
welfare. In the literature screening process, the EPA scientists pur-
sue maximum recall despite enormous cost of time and effort. To
guarantee the best possible coverage of relevant literature, an ISA is
critically reviewed and validated through as many as three drafts by
a committee of domain experts (the Clean Air Scientific Advisory
Committee), by interest groups and by the public, who recommend
additional references for citation should any have been missed.

Periodicity: This labor-intensive screening and validation pro-
cesses are conducted at regular intervals for each of the six air
pollutants to meet the CAA’s five-year requirement. Every iteration
is based on the previous one. Given the growth of publications, the
effort has increased substantially with every iteration.

Topical breadth: Each ISA covers not only multiple scientific
disciplines, including epidemiology, toxicology, ecology and more,
but also an extreme diversity of study types. An ISA is not a simple
concatenation of these disciplines and studies, but tightly integrates
them into an organic whole.

https://catalog.data.gov/dataset/isa-literature-screening-dataset-v-1
https://catalog.data.gov/dataset/isa-literature-screening-dataset-v-1
https://doi.org/10.1145/3511808.3557600
https://doi.org/10.1145/3511808.3557600
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Policy relevance: Because the goal of an ISA is to inform poli-
cymaking, cited literature need to be both topically relevant and
policy relevant. Among all the articles about a pollutant and its
effects, only those with the potential to inform risk assessment and
the setting of NAAQS directly or indirectly are policy relevant.

All these characteristics clearly distinguish the ISA literature
screening task from those in typical systematic reviews [10]. Com-
monly seen in evidence-based medicine, systematic reviews usually
focus on a sharply circumscribed topic with an orders-of-magnitude
smaller workload and data scale. For example, they often screen
hundreds to thousands of search results to find a few dozen relevant
ones to be referenced and reviewed [3, 13, 16, 18].

The EPA has had some success using commercial implementa-
tions of machine-assisted review technologies that employ active
learning, but they have not reduced the time and labor spent on
reviewing literature that will not be cited in the ISA as drastically
as needed. This paper presents an ISA literature screening dataset
both as a resource and as a “call to action” that invites research
efforts on the associated challenges.

Relevance and Expected Impact. This data resource is relevant
to several fields in the information and knowledge management
community. First, it introduces policy relevance, a new dimension
of relevance of interest to the field of information retrieval. Second,
the high-recall ranking problem is a testbed for machine learning
techniques. We show in Section 3 that it can be approached from
supervised learning, active learning, and transfer learning perspec-
tives. Third, this can also be seen as a content recommendation
problem when the collection of screened literature is recast as a
continuous data stream over multiple years. Fourth, the data is
of interest to the scientific literature management community as
an extreme case of machine-assisted approaches for systematic
review. Research on this dataset can have far-reaching real-world
impact. Regulatory scientists need more efficient tools and methods
to gather policy-relevant literature. These tools and methods shape
the scientific foundation for environmental policies, which directly
impact public health and ecological welfare.

2 ISA LITERATURE SCREENING DATASET
We provide six data files, three for each of two successive ISAs
on ozone (2013, 2020): reference metadata, citation context, and
semantic map. Below we explain their generating processes.

2.1 Reference Metadata
During the literature screening process, EPA scientists use two
strategies to search for articles. The first strategy uses high-coverage
Boolean strings of topical keywords to search various databases,
including PubMed and Web of Science. The second strategy is ci-
tation relational search, where references from the previous ISA
are used as “seeds” and any article that has cited any of the seeds
since the release of the previous ISA is returned. These searches are
conducted for each chapter to cover different aspects of research.
The results are then aggregated and deduplicated, giving rise to the
search result set, which we denote as 𝑺 .

The set of all references cited in the ISA is a mixture of the more
important policy-relevant references that require high recall, and
supplementary references that provide summaries, complete the
narrative of legislative and historical background, the explanation

Ozone 2013 Ozone 2020

# of search results, |𝑆 | 15,772 171,376
# of core references, |𝐶 | 2,153 1,349
# of relevant references, |𝑅 | 2,063 1,153
avg. # of words/title 13.57 15.23
avg. # of words/abstract 246.17 239.14

# of citation instances 5,949 3,887
# of sections 249 289
# of distinct context paragraphs 1,836 1,405
avg. # of words/paragraph 112.86 79.36

# of chapter categories 5 5
# of topics 43 43
# of disciplines 7 7
avg. # of sections/chapter category 77.00 120.20
avg. # of sections/topic 6.49 7.14
avg. # of sections/discipline 39.29 49.71

Table 1: Basic statistics for 2013-2020 ozone ISA datasets. The
three parts correspond to statistics of three types of data:
reference metadata, citation context, and semantic map.

of research instruments and methodology, and the development
process of the ISA itself. ISAs are structured such that all policy-
relevant references are contained in core sections that scientists
can readily identify (see Section 2.3), where the detailed reviewing
of evidence takes place. References cited in the core sections are
defined here as the core reference set, which we denote as 𝑪 .
The intersection of the core references and the search results are
defined as the relevant reference set, which we denote as 𝑹. Note
that the search result set 𝑆 may not fully cover the core reference
set 𝐶 because some references in the core sections may still be
supplementary and added outside of the systematic search process.

For each ISA, we release the reference metadata for all articles in
𝐶 ∪ 𝑆 . The columns include unique identifiers, authors, year, title,
abstract, and indicators of whether an article is in 𝐶 or 𝑆 .

2.2 Citation Context
Although the core references in 𝐶 share the identity that they are
“policy relevant”, they are very far from semantically homogeneous
given the breadth of topics and disciplines. Knowledge of the textual
context in which the ISA cites references in 𝐶 can be useful for
modeling 𝐶 in a fine-grained manner.

For each ISA, we provide the context in which a reference in 𝐶
is cited. We parsed the ISA as a tree of document objects (section
headings and associated paragraphs) and extracted the sections
and the context paragraphs in which a reference is cited. The same
reference can be cited in multiple sections and context paragraphs,
each called a citation instance. We use section to broadly refer to any
level of outline, ranging from Level-1 sections or chapters to Level-6
sections. We define the scope of a section as paragraphs between
that section’s heading and the next section’s heading. Therefore,
paragraphs in a child section do not belong to its parent section. In
this way, all sections form a set-theoretic partition on all paragraphs
(and hence all citation instances) in an ISA.

2.3 Semantic Map
As mentioned before, the EPA periodically updates ISAs on each of
the six air pollutants. Although the outline or structure of an earlier
ISA can differ from that of a later ISA, disciplines and core topics
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remain largely stable over time. For example, in the 2013 ozone ISA,
the atmospheric science chapter is “3 Atmospheric Chemistry and
Ambient Concentrations”, while in 2020, the chapter is “Appendix
1 Atmospheric Source, Chemistry, Meterology, Trends, and Back-
ground Ozone”. Knowledge about how chapters and sections in
different ISAs map to the same set of disciplines and topics can be
useful in modeling persistent themes in the content (and therefore
cited references) in ISAs over time.

For each ISA, we provide a semantic map from a section to its
corresponding semantic labels. Three types of semantic labels are
given. Chapter category describes a coarse-grained topic. All sec-
tions under the same chapter have the same chapter category.Topic
assigns a fine-grained topic to each section. Discipline assigns one
of seven disciplines to a section. Sections under the same topic can
have different disciplines. The topic of background and summary
sections are labeled as “Supplementary”. Non-supplementary sec-
tions are core sections and references in those sections form the
core reference set 𝑅. The semantic map does not contain an ISA’s
opening chapters that summarize later chapters (e.g., “Integrated
Synthesis”), as those chapters are entirely supplementary in the
perspective of this work.

Table 1 shows the basic statistics of the three data files for the
two successive ozone ISAs. The topic “Supplementary” is excluded
from “# of topics” and “avg. # of sections/topic”. In the 2013 (2020)
ozone ISA, 106 (298) sections are supplementary, respectively.

3 THE HIGH-RECALL RANKING PROBLEM
3.1 Problem Formulation
EPA scientists’ most pressing need is to reduce manual efforts
in reviewing hundreds of thousands of search results to identify
policy-relevant references. It translates into a high-recall ranking
problem: “to rank references in one ISA’s 𝑆 set such that all core
references in the subset 𝑅 are ranked high and identified early in the
reviewing process.” Given the richness of the above data resources,
the problem can be formulated in various ways.

Supervised learning: Because an ISA on the same pollutant is
updated iteratively, it is reasonable to assume that the notion of
relevance from past ISAs generalizes to future versions. Thus the
high-recall ranking problem can be approached from a supervised
learning perspective. That is, a ranker can be trained on the data of
the previous ISA and applied to the 𝑆 set of the current ISA. This
approach produces a static ranking of 𝑆 .

Classical active learning: The problem can also be approached
in an active learning framework [8, 17]. At the beginning of the
reviewing process, scientists assign positive (relevant) and nega-
tive (non-relevant) labels to a small random subset of references,
which can be used to train an initial machine learning classifier. In
subsequent rounds, the classifier proactively selects informative
references and asks for their labels. Those labels are then used to
update the classifier. Unlike the static ranking produced by super-
vised learning, active learning can improve the classifier and hence
the classifier-induced ranking of 𝑆 continuously.

Active learning with knowledge transfer: The above two
approaches can join force: one can transfer the knowledge learned
from past ISA data to the active learning classifier. The benefit
is that the transferred knowledge can save the labeling efforts of

active learning, especially at the beginning of the process when no
data is labeled, a problem known as the cold start problem [5].

Below we describe our preliminary experiments and results on
the high-recall ranking problem. As the primary goal of this paper
is to introduce the dataset and associated research opportunities, we
intentionally use simple, standard algorithms to provide a preview
and baseline references for future research.
3.2 Supervised Learning Experiments
Let us denote the 2013 (2020) ozone ISA search result set as 𝑆1 (𝑆2),
relevant reference set as 𝑅1 ⊂ 𝑆1 (𝑅2 ⊂ 𝑆2), respectively. We learn a
scoring function 𝑠 : X → R, where X denotes the feature space of
references, 𝑆1, 𝑆2 (and hence 𝑅1, 𝑅2) are subsets ofX. 𝑠 (𝑥) is trained
on 𝑆1, 𝑅1 and applied to references in 𝑆2. The hope is that 𝑠 (𝑥) will
assign higher scores to references in 𝑅2 than those in 𝑆2 − 𝑅2.
3.2.1 Text-based Simple Ranker. We represent each reference by
concatenating its title and abstract texts. The features are TFIDF-
weighted bag-of-ngrams (𝑛 = 1, 2, 3). We train a logistic regression
(LR) classifier on the training set {(𝑥,𝑦𝑡 ) |𝑥 ∈ 𝑆1, 𝑦𝑡 = 1{𝑥 ∈ 𝑅1}},
where 1{𝑧} = 1 if 𝑧 is true and 0 otherwise. Throughout this paper,
a LR classifier uses 𝐿2 regularization with 𝐶 = 1 and cost-sensitive
loss where the cost of each class is inverse proportional to its preva-
lence. The score is the predicted probability of relevance:

𝑠𝑡 (𝑥) = 𝑝 (𝑦𝑡 = 1|𝑥),∀𝑥 ∈ 𝑆2 . (1)

3.2.2 Text-based Ensemble Ranker. We train an ensemble of text-
based classifiers, each predicting the relevance of a reference with
respect to a subset of 𝑅1. The rationale is that a reference be-
longs to 𝑅1 if it belongs to any subset of 𝑅1. We construct sub-
sets {𝑅𝑔 |𝑔 ∈ 𝐺, 𝑅𝑔 ⊂ 𝑅1}, each consisting of references cited
in a group of semantically related sections of the 2013 ISA. For
each group 𝑔 ∈ 𝐺 , we train a LR classifier on the training set
{(𝑥,𝑦𝑔) |𝑥 ∈ 𝑆1, 𝑦𝑔 = 1{𝑥 ∈ 𝑅𝑔}}. The scoring function takes the
highest predicted probability of all classifiers:

𝑠𝑒 (𝑥) = max
𝑔∈𝐺

𝑝 (𝑦𝑔 = 1|𝑥),∀𝑥 ∈ 𝑆2 . (2)

3.2.3 Network-based Ranker. We represent each reference as nodes
in a citation network. We retrieve citation relations from iCite, an
NLM-maintained database [12]. Because iCite only covers PubMed
articles, we take the subset of references𝑀 ⊂ (𝑆1 ∪ 𝑆2) that have
PMIDs. The network contains both PMIDs in𝑀 and those that cite
or are cited by𝑀 . Node2vec [11] is used to learn 100-dimensional
feature vectors for nodes (i.e., references in𝑀). References without
a PMID are assigned zero feature vectors. We train a LR classifier
using {(𝑥,𝑦𝑛) |𝑥 ∈ 𝑆1, 𝑦𝑛 = 1{𝑥 ∈ 𝑅1}}. The scoring function is:

𝑠𝑛 (𝑥) = 𝑝 (𝑦𝑛 = 1|𝑥),∀𝑥 ∈ 𝑆2 . (3)

3.2.4 Context Paragraph-based Ranker. This method learns a dis-
tance metric between a reference and a context paragraph. The idea
is that if a reference is cited in a context paragraph, they should be
close, and far apart otherwise. Formally, let 𝑃1 be the set of context
paragraphs in the 2013 ozone ISA. Let𝑄+ = {(𝑥, 𝑝) |𝑥 ∈ 𝑅1, 𝑝 ∈ 𝑃1}
be the reference-paragraph pairs where 𝑥 is cited in 𝑝 . Let 𝑄− =

{(𝑥, 𝑝) |𝑥 ∈ 𝑆1 − 𝑅1, 𝑝 ∈ 𝑃1} be a set of reference-paragraph pairs
where 𝑥 is not cited in 𝑝 . Our goal is to construct a distance metric
𝑑 (·, ·) such that 𝑑 (𝑥, 𝑝) is small if (𝑥, 𝑝) ∈ 𝑄+ and large if (𝑥, 𝑝) ∈
𝑄−. We first represent all references in 𝑆1, 𝑆2 and paragraphs in
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WSS@95%, Combined Ranker

Figure 1: Recall curves of different ranking algorithms.

𝑃1 as 384-dimensional dense vectors using SBERT [15]. Then we
learn aMahalanobis distance metric𝑑𝐴 (𝑥, 𝑝) =

√︁
(𝑥 − 𝑝)⊤𝐴(𝑥 − 𝑝)

parameterized by a positive semi-definite matrix 𝐴. We find 𝐴 by
solving the following optimization problem [19]:

min
𝐴⪰0

∑︁
(𝑥,𝑝) ∈𝑄+

𝑑𝐴 (𝑥, 𝑝) 𝑠 .𝑡 .
∑︁

(𝑥,𝑝) ∈𝑄−
𝑑𝐴 (𝑥, 𝑝) ≥ 1 . (4)

The score of a reference is its similarity to the nearest paragraph:

𝑠𝑑 (𝑥) = 𝜎

(
− min
𝑝∈𝑃1

𝑑𝐴 (𝑥, 𝑝)
)
,∀𝑥 ∈ 𝑆2 . (5)

𝜎 (·) is the min-max normalization such that 0 ≤ 𝑠𝑑 (𝑥) ≤ 1.

3.2.5 Combined Ranker. Aggregating ranking results from differ-
ent methods often improves performance over individual meth-
ods [9]. We use a simple strategy to combine the previous four
rankers by taking the average of their scores:

𝑠𝑐 (𝑥) = (𝑠𝑡 (𝑥) + 𝑠𝑒 (𝑥) + 𝑠𝑛 (𝑥) + 𝑠𝑑 (𝑥))/4,∀𝑥 ∈ 𝑆2 . (6)

Figure 1 shows the recall curves of different rankers, includ-
ing the random ranking baseline. The text-based ensemble ranker
reaches 95% recall when 28.6% of 𝑆2 are screened, the best among
four individual rankers. The combined ranker achieves 95% recall
when 22.4% of 𝑆2 are screened, outperforming any individual ranker.
The curve of network-based ranker has a bend because a large part
of 𝑆2 (56%) and 𝑅2 (38%) do not have PMIDs and therefore can-
not learn node vectors. It shows the limitation of constructing the
citation network for these documents using only iCite.
3.3 Active Learning Experiments
We simulate the active learning process on 𝑆2, the search result set
of 2020 ozone ISA. In each iteration, we sample 𝑘 = 100 references
from 𝑆2 and obtain their labels. This mimics the process of asking
experts to review and judge the relevance of these references. We
then update the same type of LR classifier as in Section 3.2.1 and
rerank references in 𝑆2 using predicted probability of relevance.

We evaluate ranking performance using work saved over sam-
pling at recall 𝑅 (WSS@𝑅). It measures howmuch work (percentage
of search results to be screened) is saved over random sampling
to achieve a desired level of recall. The metric is commonly used
in systematic review research [7, 14]. 𝑅 is usually set to 95% to
emphasize high recall. Given a ranked list, let 𝑇𝑃 (𝐹𝑃 ) be the num-
ber of true (false) positives above the cutoff rank that reaches 95%
recall, and 𝑁 be the total number of documents in the ranked list.
Then𝑊𝑆𝑆@95% = 95%− (𝑇𝑃 +𝐹𝑃)/𝑁 .We illustrate WSS@95% for
the combined ranker in Figure 1. It reaches 95% recall after screen-
ing 22.4% of 𝑆2, saving (95-22.4)%=72.6% of work (or 72.6% ×|𝑆2 |

Figure 2: Learning curves of different active learning strate-
gies. ‘RS’: random sampling; ‘US’: uncertainty sampling.

=124,419 references) over random sampling. Clearly, the larger this
metric, the better the ranked list.

We use two methods to initialize the classifier. (1) Randomly
sampling 100 references from 𝑆2 to train an initial classifier. (2)
Pseudo-labeling 𝑆2 by transferring knowledge from the com-
bined ranker 𝑠𝑐 (𝑥). Let 𝑟𝑐 (𝑥) be the rank position of reference
𝑥 ∈ 𝑆2 according to 𝑠𝑐 (𝑥). We label the top-ranked |𝑅1 | refer-
ences in 𝑆2 as pseudo-relevant and train the initial classifier using
{(𝑥,𝑦) |𝑥 ∈ 𝑆2, 𝑦 = 1{𝑟𝑐 (𝑥) ≤ |𝑅1 |}}. In later iterations, the clas-
sifier is retrained on both pseudo labels and true labels. Loss on
pseudo labels is downweighted by a factor of 10−2 to prevent it
from dominating the loss function. Two sampling strategies are
used in subsequent iterations. (1) Random sampling: selecting
100 references at random. (2) Uncertainty sampling: selecting
100 references predicted with probabilities closest to 𝑝 = 0.5.

Figure 2 shows the learning curves of different active learning
strategies. We observe a clear advantage of transferring the knowl-
edge from a past ISA to the reviewing process of a later ISA on the
same pollutant. The preliminary result highlights the missed oppor-
tunity by classical active learning methods: to drastically reduce
screening efforts by exploiting the recurring nature of ISAs.

4 CONCLUSION AND FUTUREWORK
This paper introduces the literature screening dataset for the EPA’s
integrated science assessments (ISAs). The special nature of ISAs
makes the literature screening task especially challenging: unprece-
dented scale, high-recall requirement, periodic updates, breadth
of topics, and the policy relevance criterion. To support research
on this problem, we provide three genres of data associated with
two successive ISAs on the same pollutant. Our preliminary experi-
ments show the promise of transferring relevance ranking knowl-
edge learned from a previous ISA to a future ISA. The knowledge
can be used to warm-start an active learning classifier, more effec-
tively reducing the reviewing efforts in reaching a high recall than
classical active learning classifiers that start from scratch.

Future work can not only explore more advanced machine learn-
ing techniques but also refine our problem formulations. For exam-
ple, active learning strategies can be made methodical to provide
high recall with statistical guarantees [8]. Various modalities of
user feedback can be considered in active learning [4, 20], especially
when the ultimate goal is not to train an accurate classifier, but to
harvest all relevant documents [21]. Different years’ ISAs may have
topical shifts (e.g., the dosimetry chapter in the 2013 Ozone ISA
was deprecated in the 2020 ISA), and therefore models learned from
previous ISAs should account for distributional shift (e.g., covariate
shift) when applied to later years [6].
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